Skip to contents

Performs k-fold cross-validation to select the optimal regularization parameter (lambda) for functional basis regression.

Usage

fregre.basis.cv(fdataobj, y, kfold = 10, lambda.range = NULL, seed = NULL, ...)

Arguments

fdataobj

An object of class 'fdata' (functional covariate).

y

Response vector.

kfold

Number of folds for cross-validation (default 10).

lambda.range

Range of lambda values to try. Default is 10^seq(-4, 4, length.out = 20).

seed

Random seed for fold assignment.

...

Additional arguments passed to fregre.basis.

Value

A list with components:

optimal.lambda

Optimal regularization parameter

cv.errors

Mean squared prediction error for each lambda

cv.se

Standard error of cv.errors

model

Fitted model with optimal lambda