Package index
-
fdata() - Create a functional data object
-
fdata.cen() - Center functional data
-
deriv() - Compute functional derivative
-
mean(<fdata>) - Compute functional mean
-
median() - Compute Functional Median
-
trimmed() - Compute Functional Trimmed Mean
-
trimvar() - Compute Functional Trimmed Variance
-
var() - Functional Variance
-
sd() - Functional Standard Deviation
-
normalize() - Normalize functional data
-
standardize() - Standardize functional data (z-score normalization)
-
scale_minmax() - Min-Max scaling for functional data
-
gmed() - Geometric Median of Functional Data
-
inprod.fdata() - Inner Product of Functional Data
-
int.simpson() - Utility Functions for Functional Data Analysis
-
localavg.fdata() - Local Averages Feature Extraction
-
fdata.bootstrap() - Bootstrap Functional Data
-
fdata.bootstrap.ci() - Bootstrap Confidence Intervals for Functional Statistics
-
df_to_fdata2d() - Convert DataFrame to 2D functional data
-
fdata2basis() - Convert Functional Data to Basis Coefficients
-
fdata2basis_2d() - Convert 2D Functional Data to Tensor Product Basis Coefficients
-
fdata2basis_cv() - Cross-Validation for Basis Function Number Selection
-
basis2fdata() - Basis Representation Functions for Functional Data
-
basis2fdata_2d() - Reconstruct 2D Functional Data from Tensor Product Basis Coefficients
-
fdata2fd() - Convert Functional Data to fd class
-
fdata2pc() - Convert Functional Data to Principal Component Scores
-
fdata2pls() - Convert Functional Data to PLS Scores
-
basis.aic() - AIC for Basis Representation
-
basis.bic() - BIC for Basis Representation
-
basis.gcv() - GCV Score for Basis Representation
-
select.basis.auto() - Automatic Per-Curve Basis Type and Number Selection
-
pspline() - P-spline Smoothing for Functional Data
-
pspline.2d() - P-spline Smoothing for 2D Functional Data
-
depth() - Depth Functions for Functional Data
-
depth.BD() - Band Depth
-
depth.FM() - Fraiman-Muniz Depth
-
depth.FSD() - Functional Spatial Depth
-
depth.KFSD() - Kernel Functional Spatial Depth
-
depth.MBD() - Modified Band Depth
-
depth.MEI() - Modified Epigraph Index
-
depth.mode() - Modal Depth
-
depth.RP() - Random Projection Depth
-
depth.RPD() - Random Projection Depth with Derivatives
-
depth.RT() - Random Tukey Depth
-
metric() - Distance Metrics for Functional Data
-
metric.DTW() - Dynamic Time Warping for Functional Data
-
metric.hausdorff() - Hausdorff Metric for Functional Data
-
metric.kl() - Kullback-Leibler Divergence Metric for Functional Data
-
metric.lp() - Lp Metric for Functional Data
-
norm() - Compute Lp Norm of Functional Data
-
semimetric.basis() - Semi-metric based on Basis Expansion
-
semimetric.deriv() - Semi-metric based on Derivatives
-
semimetric.fourier() - Semi-metric based on Fourier Coefficients (FFT)
-
semimetric.hshift() - Semi-metric based on Horizontal Shift (Time Warping)
-
semimetric.pca() - Semi-metric based on Principal Components
-
group.distance() - Compute Distance/Similarity Between Groups of Functional Data
-
cluster.fcm() - Fuzzy C-Means Clustering for Functional Data
-
cluster.init() - K-Means++ Center Initialization
-
cluster.kmeans() - Clustering Functions for Functional Data
-
cluster.optim() - Optimal Number of Clusters for Functional K-Means
-
outliergram() - Outliergram for Functional Data
-
outliers.boxplot() - Outlier Detection using Functional Boxplot
-
outliers.depth.pond() - Outlier Detection for Functional Data
-
outliers.depth.trim() - Outlier Detection using Trimmed Depth
-
outliers.lrt() - LRT-based Outlier Detection for Functional Data
-
outliers.thres.lrt() - LRT Outlier Detection Threshold
-
magnitudeshape() - Magnitude-Shape Outlier Detection for Functional Data
-
fregre.basis() - Functional Basis Regression
-
fregre.basis.cv() - Cross-Validation for Functional Basis Regression
-
fregre.np() - Nonparametric Functional Regression
-
fregre.np.cv() - Cross-Validation for Nonparametric Functional Regression
-
fregre.np.multi() - Nonparametric Regression with Multiple Functional Predictors
-
fregre.pc() - Functional Regression
-
fregre.pc.cv() - Cross-Validation for Functional PC Regression
-
optim.np() - Optimize Bandwidth Using Cross-Validation
-
flm.test() - Statistical Tests for Functional Data
-
pred.MAE() - Mean Absolute Error
-
pred.MSE() - Mean Squared Error
-
pred.R2() - R-Squared (Coefficient of Determination)
-
pred.RMSE() - Root Mean Squared Error
-
estimate.period() - Estimate Seasonal Period using FFT
-
detect.period() - Seasonal Analysis Functions for Functional Data
-
detect.periods() - Detect Multiple Concurrent Periods
-
detect.peaks() - Detect Peaks in Functional Data
-
autoperiod() - Autoperiod: Hybrid FFT + ACF Period Detection
-
cfd.autoperiod() - CFDAutoperiod: Clustered Filtered Detrended Autoperiod
-
sazed() - SAZED: Spectral-ACF Zero-crossing Ensemble Detection
-
lomb.scargle() - Lomb-Scargle Periodogram
-
matrix.profile() - Matrix Profile for Motif Discovery and Period Detection
-
stl.fd() - STL Decomposition: Seasonal and Trend decomposition using LOESS
-
ssa.fd() - Singular Spectrum Analysis (SSA) for Time Series Decomposition
-
seasonal.strength() - Measure Seasonal Strength
-
seasonal.strength.curve() - Time-Varying Seasonal Strength
-
detect.seasonality.changes() - Detect Changes in Seasonality
-
detect.seasonality.changes.auto() - Detect Seasonality Changes with Automatic Threshold
-
detect_amplitude_modulation() - Detect Amplitude Modulation in Seasonal Time Series
-
instantaneous.period() - Estimate Instantaneous Period
-
analyze.peak.timing() - Analyze Peak Timing Variability
-
classify.seasonality() - Classify Seasonality Type
-
detrend() - Remove Trend from Functional Data
-
decompose() - Seasonal-Trend Decomposition
-
S.KNN() - K-Nearest Neighbors Smoother Matrix
-
S.LCR() - Local Cubic Regression Smoother Matrix
-
S.LLR() - Local Linear Regression Smoother Matrix
-
S.LPR() - Local Polynomial Regression Smoother Matrix
-
S.NW() - Smoothing Functions for Functional Data
-
CV.S() - Cross-Validation for Smoother Selection
-
GCV.S() - Generalized Cross-Validation for Smoother Selection
-
h.default() - Default Bandwidth
-
register.fd() - Curve Registration (Alignment)
-
Kernel() - Unified Symmetric Kernel Interface
-
Kernel.asymmetric() - Unified Asymmetric Kernel Interface
-
Kernel.integrate() - Unified Integrated Kernel Interface
-
Ker.cos() - Cosine Kernel
-
Ker.epa() - Epanechnikov Kernel
-
Ker.norm() - Kernel Functions
-
Ker.quar() - Quartic (Biweight) Kernel
-
Ker.tri() - Triweight Kernel
-
Ker.unif() - Uniform (Rectangular) Kernel
-
AKer.cos() - Asymmetric Cosine Kernel
-
AKer.epa() - Asymmetric Epanechnikov Kernel
-
AKer.norm() - Asymmetric Normal Kernel
-
AKer.quar() - Asymmetric Quartic Kernel
-
AKer.tri() - Asymmetric Triweight Kernel
-
AKer.unif() - Asymmetric Uniform Kernel
-
IKer.cos() - Integrated Cosine Kernel
-
IKer.epa() - Integrated Epanechnikov Kernel
-
IKer.norm() - Integrated Normal Kernel
-
IKer.quar() - Integrated Quartic Kernel
-
IKer.tri() - Integrated Triweight Kernel
-
IKer.unif() - Integrated Uniform Kernel
-
kernel.add() - Add Covariance Functions
-
kernel.brownian() - Brownian Motion Covariance Function
-
kernel.exponential() - Exponential Covariance Function
-
kernel.gaussian() - Gaussian (Squared Exponential) Covariance Function
-
kernel.linear() - Linear Covariance Function
-
kernel.matern() - Matern Covariance Function
-
kernel.mult() - Multiply Covariance Functions
-
kernel.periodic() - Periodic Covariance Function
-
kernel.polynomial() - Polynomial Covariance Function
-
kernel.whitenoise() - White Noise Covariance Function
-
make.gaussian.process() - Generate Gaussian Process Samples
-
cov() - Functional Covariance Function
-
eFun() - Generate Eigenfunction Basis
-
eVal() - Generate Eigenvalue Sequence
-
simFunData() - Simulate Functional Data via Karhunen-Loeve Expansion
-
simMultiFunData() - Simulate Multivariate Functional Data
-
addError() - Add Measurement Error to Functional Data
-
irregFdata() - Create an Irregular Functional Data Object
-
is.irregular() - Check if an Object is Irregular Functional Data
-
sparsify() - Convert Regular Functional Data to Irregular by Subsampling
-
as.fdata() - Convert Irregular Functional Data to Regular Grid
-
mean(<irregFdata>) - Estimate Mean Function for Irregular Data
-
r.bridge() - Generate Brownian Bridge
-
r.brownian() - Generate Brownian Motion
-
r.ou() - Generate Ornstein-Uhlenbeck Process
-
fmean.test.fdata() - Test for Equality of Functional Means
-
group.test() - Permutation Test for Group Differences
-
autoplot(<fdata>) - Create a ggplot for fdata objects
-
plot(<fdata>) - Plot method for fdata objects
-
boxplot(<fdata>) - Functional Boxplot
-
plot(<fdata2pc>) - Plot FPCA Results
-
plot(<basis.auto>) - Plot method for basis.auto objects
-
plot(<basis.cv>) - Plot method for basis.cv objects
-
plot(<cluster.fcm>) - Plot Method for cluster.fcm Objects
-
plot(<cluster.kmeans>) - Plot Method for cluster.kmeans Objects
-
plot(<cluster.optim>) - Plot Method for cluster.optim Objects
-
plot(<group.distance>) - Plot method for group.distance
-
plot(<outliergram>) - Plot Method for Outliergram Objects
-
plot(<outliers.fdata>) - Plot method for outliers.fdata objects
-
plot(<pspline>) - Plot method for pspline objects
-
plot(<pspline.2d>) - Plot method for pspline.2d objects
-
plot(<register.fd>) - Plot Method for register.fd Objects
-
plot(<magnitudeshape>) - Plot Method for magnitudeshape Objects
-
predict(<fregre.fd>) - Predict Method for Functional Regression (fregre.fd)
-
predict(<fregre.np>) - Predict Method for Nonparametric Functional Regression (fregre.np)
-
predict(<fregre.np.multi>) - Predict method for fregre.np.multi
-
print(<fdata>) - Print method for fdata objects
-
print(<fdata2pc>) - Print Method for FPCA Results
-
print(<fdata.bootstrap.ci>) - Print method for bootstrap CI
-
print(<basis.auto>) - Print method for basis.auto objects
-
print(<basis.cv>) - Print method for basis.cv objects
-
print(<cluster.fcm>) - Print Method for cluster.fcm Objects
-
print(<cluster.kmeans>) - Print Method for cluster.kmeans Objects
-
print(<cluster.optim>) - Print Method for cluster.optim Objects
-
print(<fbplot>) - Print Method for fbplot Objects
-
print(<fregre.fd>) - Print method for fregre objects
-
print(<fregre.np>) - Print method for fregre.np objects
-
print(<fregre.np.multi>) - Print method for fregre.np.multi
-
print(<group.distance>) - Print method for group.distance
-
print(<group.test>) - Print method for group.test
-
print(<kernel>) - Print Method for Covariance Functions
-
print(<magnitudeshape>) - Print Method for magnitudeshape Objects
-
print(<outliergram>) - Print Method for Outliergram Objects
-
print(<outliers.fdata>) - Print method for outliers.fdata objects
-
print(<pspline>) - Print method for pspline objects
-
print(<pspline.2d>) - Print method for pspline.2d objects
-
print(<register.fd>) - Print Method for register.fd Objects
-
summary(<basis.auto>) - Summary method for basis.auto objects
-
summary(<fdata>) - Summary method for fdata objects
-
`[`(<fdata>) - Subset method for fdata objects
-
kernels - Covariance Kernel Functions for Gaussian Processes
-
fdarsfdars-package - fdars: Functional Data Analysis in Rust