Skip to contents

Functional Data Objects

fdata()
Create a functional data object
fdata.cen()
Center functional data
deriv()
Compute functional derivative
mean(<fdata>)
Compute functional mean
median()
Compute Functional Median
trimmed()
Compute Functional Trimmed Mean
trimvar()
Compute Functional Trimmed Variance
var()
Functional Variance
sd()
Functional Standard Deviation
normalize()
Normalize functional data
standardize()
Standardize functional data (z-score normalization)
scale_minmax()
Min-Max scaling for functional data
gmed()
Geometric Median of Functional Data
inprod.fdata()
Inner Product of Functional Data
int.simpson()
Utility Functions for Functional Data Analysis
localavg.fdata()
Local Averages Feature Extraction
fdata.bootstrap()
Bootstrap Functional Data
fdata.bootstrap.ci()
Bootstrap Confidence Intervals for Functional Statistics
df_to_fdata2d()
Convert DataFrame to 2D functional data

Basis Representation

fdata2basis()
Convert Functional Data to Basis Coefficients
fdata2basis_2d()
Convert 2D Functional Data to Tensor Product Basis Coefficients
fdata2basis_cv()
Cross-Validation for Basis Function Number Selection
basis2fdata()
Basis Representation Functions for Functional Data
basis2fdata_2d()
Reconstruct 2D Functional Data from Tensor Product Basis Coefficients
fdata2fd()
Convert Functional Data to fd class
fdata2pc()
Convert Functional Data to Principal Component Scores
fdata2pls()
Convert Functional Data to PLS Scores
basis.aic()
AIC for Basis Representation
basis.bic()
BIC for Basis Representation
basis.gcv()
GCV Score for Basis Representation
select.basis.auto()
Automatic Per-Curve Basis Type and Number Selection
pspline()
P-spline Smoothing for Functional Data
pspline.2d()
P-spline Smoothing for 2D Functional Data

Depth Functions

depth()
Depth Functions for Functional Data
depth.BD()
Band Depth
depth.FM()
Fraiman-Muniz Depth
depth.FSD()
Functional Spatial Depth
depth.KFSD()
Kernel Functional Spatial Depth
depth.MBD()
Modified Band Depth
depth.MEI()
Modified Epigraph Index
depth.mode()
Modal Depth
depth.RP()
Random Projection Depth
depth.RPD()
Random Projection Depth with Derivatives
depth.RT()
Random Tukey Depth

Distance & Metrics

metric()
Distance Metrics for Functional Data
metric.DTW()
Dynamic Time Warping for Functional Data
metric.hausdorff()
Hausdorff Metric for Functional Data
metric.kl()
Kullback-Leibler Divergence Metric for Functional Data
metric.lp()
Lp Metric for Functional Data
norm()
Compute Lp Norm of Functional Data
semimetric.basis()
Semi-metric based on Basis Expansion
semimetric.deriv()
Semi-metric based on Derivatives
semimetric.fourier()
Semi-metric based on Fourier Coefficients (FFT)
semimetric.hshift()
Semi-metric based on Horizontal Shift (Time Warping)
semimetric.pca()
Semi-metric based on Principal Components
group.distance()
Compute Distance/Similarity Between Groups of Functional Data

Clustering

cluster.fcm()
Fuzzy C-Means Clustering for Functional Data
cluster.init()
K-Means++ Center Initialization
cluster.kmeans()
Clustering Functions for Functional Data
cluster.optim()
Optimal Number of Clusters for Functional K-Means

Outlier Detection

outliergram()
Outliergram for Functional Data
outliers.boxplot()
Outlier Detection using Functional Boxplot
outliers.depth.pond()
Outlier Detection for Functional Data
outliers.depth.trim()
Outlier Detection using Trimmed Depth
outliers.lrt()
LRT-based Outlier Detection for Functional Data
outliers.thres.lrt()
LRT Outlier Detection Threshold
magnitudeshape()
Magnitude-Shape Outlier Detection for Functional Data

Regression

fregre.basis()
Functional Basis Regression
fregre.basis.cv()
Cross-Validation for Functional Basis Regression
fregre.np()
Nonparametric Functional Regression
fregre.np.cv()
Cross-Validation for Nonparametric Functional Regression
fregre.np.multi()
Nonparametric Regression with Multiple Functional Predictors
fregre.pc()
Functional Regression
fregre.pc.cv()
Cross-Validation for Functional PC Regression
optim.np()
Optimize Bandwidth Using Cross-Validation
flm.test()
Statistical Tests for Functional Data
pred.MAE()
Mean Absolute Error
pred.MSE()
Mean Squared Error
pred.R2()
R-Squared (Coefficient of Determination)
pred.RMSE()
Root Mean Squared Error

Seasonal Analysis

estimate.period()
Estimate Seasonal Period using FFT
detect.period()
Seasonal Analysis Functions for Functional Data
detect.periods()
Detect Multiple Concurrent Periods
detect.peaks()
Detect Peaks in Functional Data
autoperiod()
Autoperiod: Hybrid FFT + ACF Period Detection
cfd.autoperiod()
CFDAutoperiod: Clustered Filtered Detrended Autoperiod
sazed()
SAZED: Spectral-ACF Zero-crossing Ensemble Detection
lomb.scargle()
Lomb-Scargle Periodogram
matrix.profile()
Matrix Profile for Motif Discovery and Period Detection
stl.fd()
STL Decomposition: Seasonal and Trend decomposition using LOESS
ssa.fd()
Singular Spectrum Analysis (SSA) for Time Series Decomposition
seasonal.strength()
Measure Seasonal Strength
seasonal.strength.curve()
Time-Varying Seasonal Strength
detect.seasonality.changes()
Detect Changes in Seasonality
detect.seasonality.changes.auto()
Detect Seasonality Changes with Automatic Threshold
detect_amplitude_modulation()
Detect Amplitude Modulation in Seasonal Time Series
instantaneous.period()
Estimate Instantaneous Period
analyze.peak.timing()
Analyze Peak Timing Variability
classify.seasonality()
Classify Seasonality Type
detrend()
Remove Trend from Functional Data
decompose()
Seasonal-Trend Decomposition

Smoothing

S.KNN()
K-Nearest Neighbors Smoother Matrix
S.LCR()
Local Cubic Regression Smoother Matrix
S.LLR()
Local Linear Regression Smoother Matrix
S.LPR()
Local Polynomial Regression Smoother Matrix
S.NW()
Smoothing Functions for Functional Data
CV.S()
Cross-Validation for Smoother Selection
GCV.S()
Generalized Cross-Validation for Smoother Selection
h.default()
Default Bandwidth
register.fd()
Curve Registration (Alignment)

Kernels (Smoothing)

Kernel()
Unified Symmetric Kernel Interface
Kernel.asymmetric()
Unified Asymmetric Kernel Interface
Kernel.integrate()
Unified Integrated Kernel Interface
Ker.cos()
Cosine Kernel
Ker.epa()
Epanechnikov Kernel
Ker.norm()
Kernel Functions
Ker.quar()
Quartic (Biweight) Kernel
Ker.tri()
Triweight Kernel
Ker.unif()
Uniform (Rectangular) Kernel
AKer.cos()
Asymmetric Cosine Kernel
AKer.epa()
Asymmetric Epanechnikov Kernel
AKer.norm()
Asymmetric Normal Kernel
AKer.quar()
Asymmetric Quartic Kernel
AKer.tri()
Asymmetric Triweight Kernel
AKer.unif()
Asymmetric Uniform Kernel
IKer.cos()
Integrated Cosine Kernel
IKer.epa()
Integrated Epanechnikov Kernel
IKer.norm()
Integrated Normal Kernel
IKer.quar()
Integrated Quartic Kernel
IKer.tri()
Integrated Triweight Kernel
IKer.unif()
Integrated Uniform Kernel

Covariance Functions (GP)

kernel.add()
Add Covariance Functions
kernel.brownian()
Brownian Motion Covariance Function
kernel.exponential()
Exponential Covariance Function
kernel.gaussian()
Gaussian (Squared Exponential) Covariance Function
kernel.linear()
Linear Covariance Function
kernel.matern()
Matern Covariance Function
kernel.mult()
Multiply Covariance Functions
kernel.periodic()
Periodic Covariance Function
kernel.polynomial()
Polynomial Covariance Function
kernel.whitenoise()
White Noise Covariance Function
make.gaussian.process()
Generate Gaussian Process Samples
cov()
Functional Covariance Function

Simulation

eFun()
Generate Eigenfunction Basis
eVal()
Generate Eigenvalue Sequence
simFunData()
Simulate Functional Data via Karhunen-Loeve Expansion
simMultiFunData()
Simulate Multivariate Functional Data
addError()
Add Measurement Error to Functional Data

Irregular Functional Data

irregFdata()
Create an Irregular Functional Data Object
is.irregular()
Check if an Object is Irregular Functional Data
sparsify()
Convert Regular Functional Data to Irregular by Subsampling
as.fdata()
Convert Irregular Functional Data to Regular Grid
mean(<irregFdata>)
Estimate Mean Function for Irregular Data

Random Processes

r.bridge()
Generate Brownian Bridge
r.brownian()
Generate Brownian Motion
r.ou()
Generate Ornstein-Uhlenbeck Process

Statistical Tests

fmean.test.fdata()
Test for Equality of Functional Means
group.test()
Permutation Test for Group Differences

Plotting

autoplot(<fdata>)
Create a ggplot for fdata objects
plot(<fdata>)
Plot method for fdata objects
boxplot(<fdata>)
Functional Boxplot
plot(<fdata2pc>)
Plot FPCA Results
plot(<basis.auto>)
Plot method for basis.auto objects
plot(<basis.cv>)
Plot method for basis.cv objects
plot(<cluster.fcm>)
Plot Method for cluster.fcm Objects
plot(<cluster.kmeans>)
Plot Method for cluster.kmeans Objects
plot(<cluster.optim>)
Plot Method for cluster.optim Objects
plot(<group.distance>)
Plot method for group.distance
plot(<outliergram>)
Plot Method for Outliergram Objects
plot(<outliers.fdata>)
Plot method for outliers.fdata objects
plot(<pspline>)
Plot method for pspline objects
plot(<pspline.2d>)
Plot method for pspline.2d objects
plot(<register.fd>)
Plot Method for register.fd Objects
plot(<magnitudeshape>)
Plot Method for magnitudeshape Objects

Prediction

predict(<fregre.fd>)
Predict Method for Functional Regression (fregre.fd)
predict(<fregre.np>)
Predict Method for Nonparametric Functional Regression (fregre.np)
predict(<fregre.np.multi>)
Predict method for fregre.np.multi
print(<fdata>)
Print method for fdata objects
print(<fdata2pc>)
Print Method for FPCA Results
print(<fdata.bootstrap.ci>)
Print method for bootstrap CI
print(<basis.auto>)
Print method for basis.auto objects
print(<basis.cv>)
Print method for basis.cv objects
print(<cluster.fcm>)
Print Method for cluster.fcm Objects
print(<cluster.kmeans>)
Print Method for cluster.kmeans Objects
print(<cluster.optim>)
Print Method for cluster.optim Objects
print(<fbplot>)
Print Method for fbplot Objects
print(<fregre.fd>)
Print method for fregre objects
print(<fregre.np>)
Print method for fregre.np objects
print(<fregre.np.multi>)
Print method for fregre.np.multi
print(<group.distance>)
Print method for group.distance
print(<group.test>)
Print method for group.test
print(<kernel>)
Print Method for Covariance Functions
print(<magnitudeshape>)
Print Method for magnitudeshape Objects
print(<outliergram>)
Print Method for Outliergram Objects
print(<outliers.fdata>)
Print method for outliers.fdata objects
print(<pspline>)
Print method for pspline objects
print(<pspline.2d>)
Print method for pspline.2d objects
print(<register.fd>)
Print Method for register.fd Objects
summary(<basis.auto>)
Summary method for basis.auto objects
summary(<fdata>)
Summary method for fdata objects

Other

`[`(<fdata>)
Subset method for fdata objects
kernels
Covariance Kernel Functions for Gaussian Processes
fdars fdars-package
fdars: Functional Data Analysis in Rust