Skip to contents

Fits a functional linear model using basis expansion (ridge regression). Uses the anofox-regression Rust backend for efficient L2-regularized regression.

Usage

fregre.basis(fdataobj, y, basis.x = NULL, basis.b = NULL, lambda = 0, ...)

Arguments

fdataobj

An object of class 'fdata' (functional covariate).

y

Response vector.

basis.x

Basis for the functional covariate (currently ignored).

basis.b

Basis for the coefficient function (currently ignored).

lambda

Smoothing/regularization parameter (L2 penalty).

...

Additional arguments.

Value

A fitted regression object of class 'fregre.fd' with components:

coefficients

Beta coefficient function values

intercept

Intercept term

fitted.values

Fitted values

residuals

Residuals

lambda

Regularization parameter used

r.squared

R-squared (coefficient of determination)

mean.X

Mean of functional covariate (for prediction)

mean.y

Mean of response (for prediction)

sr2

Residual variance

fdataobj

Original functional data

y

Response vector

call

The function call